1,162 research outputs found

    Large Aperiodic Semigroups

    Get PDF
    The syntactic complexity of a regular language is the size of its syntactic semigroup. This semigroup is isomorphic to the transition semigroup of the minimal deterministic finite automaton accepting the language, that is, to the semigroup generated by transformations induced by non-empty words on the set of states of the automaton. In this paper we search for the largest syntactic semigroup of a star-free language having nn left quotients; equivalently, we look for the largest transition semigroup of an aperiodic finite automaton with nn states. We introduce two new aperiodic transition semigroups. The first is generated by transformations that change only one state; we call such transformations and resulting semigroups unitary. In particular, we study complete unitary semigroups which have a special structure, and we show that each maximal unitary semigroup is complete. For n4n \ge 4 there exists a complete unitary semigroup that is larger than any aperiodic semigroup known to date. We then present even larger aperiodic semigroups, generated by transformations that map a non-empty subset of states to a single state; we call such transformations and semigroups semiconstant. In particular, we examine semiconstant tree semigroups which have a structure based on full binary trees. The semiconstant tree semigroups are at present the best candidates for largest aperiodic semigroups. We also prove that 2n12^n-1 is an upper bound on the state complexity of reversal of star-free languages, and resolve an open problem about a special case of state complexity of concatenation of star-free languages.Comment: 22 pages, 1 figure, 2 table

    Symmetric Groups and Quotient Complexity of Boolean Operations

    Full text link
    The quotient complexity of a regular language L is the number of left quotients of L, which is the same as the state complexity of L. Suppose that L and L' are binary regular languages with quotient complexities m and n, and that the transition semigroups of the minimal deterministic automata accepting L and L' are the symmetric groups S_m and S_n of degrees m and n, respectively. Denote by o any binary boolean operation that is not a constant and not a function of one argument only. For m,n >= 2 with (m,n) not in {(2,2),(3,4),(4,3),(4,4)} we prove that the quotient complexity of LoL' is mn if and only either (a) m is not equal to n or (b) m=n and the bases (ordered pairs of generators) of S_m and S_n are not conjugate. For (m,n)\in {(2,2),(3,4),(4,3),(4,4)} we give examples to show that this need not hold. In proving these results we generalize the notion of uniform minimality to direct products of automata. We also establish a non-trivial connection between complexity of boolean operations and group theory

    Checking Whether an Automaton Is Monotonic Is NP-complete

    Full text link
    An automaton is monotonic if its states can be arranged in a linear order that is preserved by the action of every letter. We prove that the problem of deciding whether a given automaton is monotonic is NP-complete. The same result is obtained for oriented automata, whose states can be arranged in a cyclic order. Moreover, both problems remain hard under the restriction to binary input alphabets.Comment: 13 pages, 4 figures. CIAA 2015. The final publication is available at http://link.springer.com/chapter/10.1007/978-3-319-22360-5_2

    The crystal structure of superoxide dismutase from Plasmodium falciparum

    Get PDF
    Background: Superoxide dismutases (SODs) are important enzymes in defence against oxidative stress. In Plasmodium falciparum, they may be expected to have special significance since part of the parasite life cycle is spent in red blood cells where the formation of reactive oxygen species is likely to be promoted by the products of haemoglobin breakdown. Thus, inhibitors of P. falciparum SODs have potential as anti-malarial compounds. As a step towards their development we have determined the crystal structure of the parasite's cytosolic iron superoxide dismutase. Results: The cytosolic iron superoxide dismutase from P. falciparum (PfFeSOD) has been overexpressed in E. coli in a catalytically active form. Its crystal structure has been solved by molecular replacement and refined against data extending to 2.5 angstrom resolution. The structure reveals a two-domain organisation and an iron centre in which the metal is coordinated by three histidines, an aspartate and a solvent molecule. Consistent with ultracentrifugation analysis the enzyme is a dimer in which a hydrogen bonding lattice links the two active centres. Conclusion: The tertiary structure of PfFeSOD is very similar to those of a number of other iron-and manganese-dependent superoxide dismutases, moreover the active site residues are conserved suggesting a common mechanism of action. Comparison of the dimer interfaces of PfFeSOD with the human manganese-dependent superoxide dismutase reveals a number of differences, which may underpin the design of parasite-selective superoxide dismutase inhibitors

    Testing the Equivalence of Regular Languages

    Full text link
    The minimal deterministic finite automaton is generally used to determine regular languages equality. Antimirov and Mosses proposed a rewrite system for deciding regular expressions equivalence of which Almeida et al. presented an improved variant. Hopcroft and Karp proposed an almost linear algorithm for testing the equivalence of two deterministic finite automata that avoids minimisation. In this paper we improve the best-case running time, present an extension of this algorithm to non-deterministic finite automata, and establish a relationship between this algorithm and the one proposed in Almeida et al. We also present some experimental comparative results. All these algorithms are closely related with the recent coalgebraic approach to automata proposed by Rutten

    Linear Parsing Expression Grammars

    Full text link
    PEGs were formalized by Ford in 2004, and have several pragmatic operators (such as ordered choice and unlimited lookahead) for better expressing modern programming language syntax. Since these operators are not explicitly defined in the classic formal language theory, it is significant and still challenging to argue PEGs' expressiveness in the context of formal language theory.Since PEGs are relatively new, there are several unsolved problems.One of the problems is revealing a subclass of PEGs that is equivalent to DFAs. This allows application of some techniques from the theory of regular grammar to PEGs. In this paper, we define Linear PEGs (LPEGs), a subclass of PEGs that is equivalent to DFAs. Surprisingly, LPEGs are formalized by only excluding some patterns of recursive nonterminal in PEGs, and include the full set of ordered choice, unlimited lookahead, and greedy repetition, which are characteristic of PEGs. Although the conversion judgement of parsing expressions into DFAs is undecidable in general, the formalism of LPEGs allows for a syntactical judgement of parsing expressions.Comment: Parsing expression grammars, Boolean finite automata, Packrat parsin

    A Computational Interpretation of Context-Free Expressions

    Full text link
    We phrase parsing with context-free expressions as a type inhabitation problem where values are parse trees and types are context-free expressions. We first show how containment among context-free and regular expressions can be reduced to a reachability problem by using a canonical representation of states. The proofs-as-programs principle yields a computational interpretation of the reachability problem in terms of a coercion that transforms the parse tree for a context-free expression into a parse tree for a regular expression. It also yields a partial coercion from regular parse trees to context-free ones. The partial coercion from the trivial language of all words to a context-free expression corresponds to a predictive parser for the expression

    Complexity in Prefix-Free Regular Languages

    Full text link
    We examine deterministic and nondeterministic state complexities of regular operations on prefix-free languages. We strengthen several results by providing witness languages over smaller alphabets, usually as small as possible. We next provide the tight bounds on state complexity of symmetric difference, and deterministic and nondeterministic state complexity of difference and cyclic shift of prefix-free languages.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Quotient Complexity of Regular Languages

    Full text link
    The past research on the state complexity of operations on regular languages is examined, and a new approach based on an old method (derivatives of regular expressions) is presented. Since state complexity is a property of a language, it is appropriate to define it in formal-language terms as the number of distinct quotients of the language, and to call it "quotient complexity". The problem of finding the quotient complexity of a language f(K,L) is considered, where K and L are regular languages and f is a regular operation, for example, union or concatenation. Since quotients can be represented by derivatives, one can find a formula for the typical quotient of f(K,L) in terms of the quotients of K and L. To obtain an upper bound on the number of quotients of f(K,L) all one has to do is count how many such quotients are possible, and this makes automaton constructions unnecessary. The advantages of this point of view are illustrated by many examples. Moreover, new general observations are presented to help in the estimation of the upper bounds on quotient complexity of regular operations

    Probe spectroscopy in an operating magneto-optical trap: the role of Raman transitions between discrete and continuum atomic states

    Full text link
    We report on cw measurements of probe beam absorption and four-wave-mixing spectra in a 85^{85}Rb magneto-optical trap taken while the trap is in operation. The trapping beams are used as pump light. We concentrate on the central feature of the spectra at small pump-probe detuning and attribute its narrow resonant structures to the superposition of Raman transitions between light-shifted sublevels of the ground atomic state and to atomic recoil processes. These two contributions have different dependencies on trap parameters and we show that the former is inhomogeneously broadened. The strong dependence of the spectra on the probe-beam polarization indicates the existence of large optical anisotropy of the cold-atom sample, which is attributed to the recoil effects. We point out that the recoil-induced resonances can be isolated from other contributions, making pump-probe spectroscopy a highly sensitive diagnostic tool for atoms in a working MOT.Comment: 9 pages, 8 figure
    corecore